JEE Advanced Syllabus 2015

The syllabus is the framework for preparation in case of any examination. JEE Advanced Exam Syllabus consists of three topics of Physics, Chemistry and Mathematics. The syllabus prescribed for the examination is similar to the standard 12 syllabus prescribed by national as well as state boards for education. This course of study is the most definitive and complete guide for JEE advanced exam preparation.

JEE Advanced Colleges




JEE Advanced Online Application Form

JEE Advanced Physics Syllabus 

Topics
Subtopics
General
Units and dimensions, dimensional analysis; least count, significant figures; Methods
of measurement and error analysis for physical quantities pertaining to the following
experiments: Experiments based on using Vernier calipers and screw gauge (micrometer),
Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat
of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v
method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter
and ammeter, and specific resistance of the material of a wire using meter bridge and post
office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles;
Uniform Circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and
dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear
momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of
planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of
uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of
angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping
of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid
bodies.
Linear and angular simple harmonic motions.
Hooke’s law, Young’s modulus.

Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise;
Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow,
equation of continuity, Bernoulli’s theorem and its applications.
Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves;
Progressive and stationary waves; Vibration of strings and air columns;Resonance; Beats;
Speed of sound in gases; Doppler effect (in sound).
Thermal Physics
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat
conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of
cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases);
Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First
law of thermodynamics and its applications (only for ideal gases); Blackbody radiation:
absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.
Electricity and Magnetism
Coulomb’s law; Electric field and potential; Electrical potential
energy of a system of point charges and of electrical dipoles in a uniform electrostatic field;
Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as,
to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and
uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and
parallel; Energy stored in a capacitor.
Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells;
Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along
the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a
current-carrying wire in a uniform magnetic field.
Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving
coil galvanometer, voltmeter, ammeter and their conversions.
Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and
LC circuits with D.C. and A.C. sources.
Optics
Rectilinear propagation of light; Reflection and refraction at plane and spherical
surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses;
Combinations of mirrors and thin lenses; Magnification.
Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.
Mordern Physics
Atomic nucleus; Alpha, beta and gamma radiations; Law of radioactive
decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and
fusion processes; Energy calculation in these processes.
Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays,
Moseley’s law; de Broglie wavelength of matter wave.

JEE Chemistry Syllabus 

Topic
Subtopic
General Topics
Concept of atoms and molecules; Dalton’s atomic theory; Mole concept;
Chemical formulae; Balanced chemical equations; Calculations (based on mole concept)
involving common oxidation-reduction, neutralisation, and displacement reactions;
Concentration in terms of mole fraction, molarity, molality and normality.
Gaseous and Liquid States
Absolute scale of temperature, ideal gas equation; Deviation from
ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most
probable velocities and their relation with temperature; Law of partial pressures; Vapour
pressure; Diffusion of gases.
Atomic Bonding and Chemical Structure
Bohr model, spectrum of hydrogen atom, quantum
numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative
quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic
configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion
principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d
orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond;
Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of
molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal
bipyramidal, tetrahedral and octahedral)
Energetics
First law of thermodynamics; Internal energy, work and heat, pressure-volume
work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of
thermodynamics; Entropy; Free energy; Criterion of spontaneity.
Chemical Equibrilium
Law of mass action; Equilibrium constant, Le Chatelier’s principle
(effect of concentration, temperature and pressure); Significance of ΔG and ΔG° in chemical
equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.
Electrochemistry
Electrochemical cells and cell reactions; Standard electrode potentials;
Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.
Chemical Kinetics
Rates of chemical reactions; Order of reactions; Rate constant; First order
reactions; Temperature dependence of rate constant (Arrhenius equation).
Soild State
Classification of solids, crystalline state, seven crystal systems (cell parameters a,
b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices;
Nearest neighbours, ionic radii, simple ionic compounds, point defects.
Solutions
Raoult’s law; Molecular weight determination from lowering of vapour pressure,
elevation of boiling point and depression of freezing point.
Surface Chemistry
Elementary concepts of adsorption (excluding adsorption isotherms);
Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples)
Nuclear Chemistry
Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics
of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.
Inorganic Chemistry
Isolation/Preparation and Properties of the following Non-Metals:
Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.
Preparation and Properties of compunds
Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon:
silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and
sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.
Transistional Elements (3d)
Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation somerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).
Preparation and properties of the following compounds
Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate
Ores and Minerals
Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.
Extractive Metallurgy
Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).
Principles and Qualitative Analysis
Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.
Organic Chemistry Concepts
Hybridisation of carbon; Sigma and pi-bonds; Shapes of simple organic molecules;
Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enol tautomerism; Determination of empirical and molecular formulae of simple
compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.
Preparation, Properties and Reactions of Alkanes
Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.
Preparation, Properties and Reactions of Alkenes And Alkynes
Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition
reactions of alkenes with X2, HX, HOX (X=halogen) and H2O; Addition reactions of alkynes; Metal acetylides.
Reactions of Benzene
Structure and aromaticity; Electrophilic substitution reactions:
halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.
Phenols
Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.
Characteristic reactions of the following
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers:Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro
reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and
related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine
substitution).
Carbohydrates
Classification; mono- and di-saccharides (glucose and sucrose); Oxidation,
reduction, glycoside formation and hydrolysis of sucrose.
Amino Acids And Peptides
General structure (only primary structure for peptides) and
physical properties.
Properties and Uses of Some Important Polymers
Natural rubber, cellulose, nylon, teflon
and PVC.
Practical Organic Chemistry

  
 JEE Advanced Mathematics Syllabus 

Topics
Subtopics
Algebra
Algebra of complex numbers, addition, multiplication, conjugation, polar
representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.
Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.
Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix
operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.
Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.
Trignometery
Trigonometric functions, their periodicity and graphs, addition and subtraction
formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations. Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).
Analytical Geometery
Two Dimensions: Cartesian coordinates, distance between two points, section formulae, shift
of origin. Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.

Equation of a circle in various forms, equations of tangent, normal and chord. Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.
Locus Problems.
Three Dimensions
Direction cosines and direction ratios, equation of a straight line in space,
equation of a plane, distance of a point from a plane.
Differential Calculus
Real valued functions of a real variable, into, onto and one-to-one
functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.
Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions. Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.
Derivative of a function, derivative of the sum, difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s Theorem and Lagrange’s Mean Value Theorem.
Integral Calculus
Integration as the inverse process of differentiation, indefinite integrals of
standard functions, definite integrals and their properties, Fundamental Theorem of Integral
Calculus.
Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.
Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.
Vectors
Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations
.

Syllabus for Apptitude Test for B.Arch Programmes
Freehand drawing: This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.

Geometrical drawing: Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders etc.

Three-dimensional perception: Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.

Imagination and aesthetic sensitivity: Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.

Architectural awareness: General interest and awareness of famous architectural creations both national and international, places and personalities (architects, designers etc. ) in the related domai








0 comments:

Post a Comment

Thank you for posting your comment. Your comment is gone for moderation.